# UCL: It Is Not Just the Forces; It Is the Time Spent In Each Position

# Chuck Wolf, MS, FAFS Human Motion Associates



# If You Continually Hit Your Thumb When Using A Hammer, Hammering Less Is Not the Answer



### Efficient Pitching is Linear Yet Angular — – Not Curvilinear



### **Think Stacking**

**Think Angular** 

### Pitching is Linear Yet Angular — – Not Curvilinear





**More Curvilinear** 

**More Linear** 

**Guess Who Had UCL Reconstruction???** 

# **UCL & Shoulder Studies: Isolation vs. Integration**

elbow flexion between 90-120 degrees during acceleration phase

peak angular velocities > 4500 deg/sec absorbed @ medial anterior oblique UCL

tightness in shoulder increases stress at elbow...

... but what about the hips???

## **Fascial Alignment Connects the Shoulder to the Hips**





#### **Anterior X-Factor**

enhances ext. & rot. moments

#### Posterior X- Factor enhances flex. & rot. moments

### Association of Opposing Hip Internal Rotation to Elbow Injuries

#### Base upon Single Leg Balance IHR Assessment



Non-Injured Players Average IHR: <u>34.5 degrees</u>

Injured Players Average IHR: 29.4 degrees

### **Secondary Valgus Force During Release & Deceleration**



*Nm* = .74 *pound-foot* 



Longer arm with lateral trunk flexion increases TUT and valgus force on the elbow. Study says 33% of valgus variance resulted in injury

(summary of study by Sabick et al)



# About 10% of all shoulder injuries in high school players result in surgery

73% of pitchers with a horizontal arm delivery (sidearm throwers) reported shoulder or elbow injury vs 21% with more vertical arm slot

Huang et al reported youth players with a history of elbow pain threw with more elbow extension at maximum external rotation & greater lateral trunk flexion at release ——— leads to increased TUT!



Shoulder external rotation can range between 170-190 degrees (normal ranges 120-140 deg.). Combine with trunk lateral flexion, increase risk of Valgus force on elbow and posterior shoulder impingement

# **Common Throwing Faults**

Drift





### **Throwing Uphill**





#### **Over Stride**

Hand Too Low

Hands Separate Late





Tight Internal Rotation of Lead Hip

# Drills to Improve Throwing Mechanics



### <u>Goals</u>

Improve Arm Slot Improve Arm Speed Improve Timing/Rhythm Proper Stride Length Increase Flexibility

### Drift, Hands Separate Late, Chest Behind Lead Leg

Drifts

Hands Late

Look for Shoulder ABD/ER moment

Chest not over lead leg



# **Throwing Drills & Technique**

### Association of Hips & Shoulders: The X-Factors



### **Towel Drills from Knee**

**Develop timing for early hand separation** 

Get out front so arm doesn't lag behind

Develop hip/torso dissociation



### **Chest to Glove Hand**

Get out front so arm doesn't lag behind

#### Develop strong glove side

# **Throwing Drills & Technique**

### Association of Hips & Shoulders: The X-Factors



Load the Back Side

**Prevent drifting** 

Hips over rubber: weight back



**Inside Pick Off Move** 

Improve arm slot

Shorter arm slot: reduce TUT

Increase Arm Speed

### **Overstride**

#### Drifts

Hands too high: too long of motion

Hands Late

Overstriding

Chest not over lead leg

Tight R ADD lacks triple ext.

**C-profile of spine** 

Lead hip relative ABD causing lack IHR



### **Overstride Corrective Drills**



### **Throwing Uphill & Hands Too Low**

#### Drifts

Hands too high: too long of motion

Hands Late

**Throws Uphill** 

Throwing hand too low

Overstriding

Chest not over lead leg



### Throwing Uphill & Hands Too Low Corrective Drills





**Towel Drills from Knee** 

**Chest to Glove Hand** 



**Inside Pickoff Move** 

# Timing & TUT



### **Good Timing**

Hands slightly high

Throwing hand at excellent level

Good stride length

**Good extension** 

Chest over lead leg

**Great balance** 



### **Relationship of Chest Over the Lead Leg**









# Thank You for Attending!!!

8stexell

.15cxll



Chuck can be reached at: <u>cwolf@humanmotionassociates.com</u> or visit www.humanmotionassociates.com

Visit us on Facebook/humanmotionassociates

About 73% of high school injuries that resulted in surgery were to pitchers

About 10% of all shoulder injuries in high school players result in surgery

73% of pitchers with a horizontal arm delivery (sidearm throwers) reported shoulder or elbow injury vs 21% with more vertical arm slot

Huang et al reported youth players with a history of elbow pain threw with more elbow extension at maximum external rotation & greater lateral trunk flexion at release

Shoulder external rotation can range between 170-190 degrees (normal ranges 120-140 deg.). Combine with trunk lateral flexion, increase risk of Valgus force on elbow and posterior shoulder impingement

Must improve mechanics and reduce time under tension upon the UCL

Internal rotation velocities between 6000-7000 deg/sec; while elbow extension at rates up to 2000 deg/sec

Shoulder rate of deceleration go from 7000 deg/sec to 0 in 50 ms Increases strain to posterior shoulder capsule and muscle tissue... But need to dissipate those forces through PXF

Longer arm with lateral trunk flexion increases TUT and valgus force on the elbow (summary of study by Sabick et al). Study says 33% of valgus variance resulted in injury

### Drift, Hands Separate Late, Chest Behind Lead Leg Corrective Drills





