Idiopathic Scoliosis

John F. Lovejoy III, M.D. Chair, Department of Orthopaedics and Sports Medicine Nemours Children's Hospital Associate Professor University of Central Florida

Disclosures

• None relevant to this talk

Learning Objectives

- Recognize different types of spinal deformity in children
- Understand common presentation & physical exam findings in children with spinal deformity
- Understand radiographic assessment of Scoliosis
- Recognize "atypical" presentations
- Understand the concepts behind treatment of childhood spinal deformity
- Understand the importance of early recognition of post-operative complications

Pediatric Scoliosis

Definition:

- Structural spinal deformity characterized by decompensation of the normal vertebral alignment during rapid skeletal growth
- Deformity is 3 dimensional
 - Coronal, sagittal, as well as abnormal vertebral rotation

Types of Scoliosis

- **Congenital** due to a congenital abnormality of the vertebrae or fused ribs
- **Neuromuscular** caused by problems such as poor muscle control or muscle weakness, or paralysis due to diseases
 - Cerebral Palsy
 - Myelomeningocele
 - Muscular Dystrophy

• Idiopathic scoliosis - is scoliosis of unknown cause. Genetic in origin.

Idiopathic Scoliosis

- By far the most common type >90%
- No definite cause
- Believed to be related to asymmetric growth of vertebral bodies
- Types
 - Early-Onset
 - Infantile Scoliosis
 - Juvenile Scoliosis
 - Late-Onset
 - Adolescent Scoliosis

Infantile Idiopathic Scoliosis

- Develops before 3 years of age
- Often occurs w/ other congenital abnormalities
- \bullet 80-90% resolve w/o tx
- \bullet 90% w/ left thoracic curve

Infantile Idiopathic Scoliosis

- The good news: often resolves! Up to 92% of curves reportedly resolve
- The bad news: if it doesn't resolve it may kill you

Bracing in EOS

- Advantages removable, lighter, widely accessible
- Disadvantages removable, rib wall deformity
- Contraindications (relative)
 - children with decreased pulmonary function

Casting

- Used in progressive curves when unable to control with a brace, either due to noncompliance or increasing stiffness
- Can perform serial casting to decrease deformity for bracing

Casting - Brief History

Risser

- Introduced casting in early 1900s for AIS
- Principles elongation and derotation

Morel and Cotrel (1964)

Built on Risser's principles but added

Mehta (1975-2000)

Modified technique of Morel and Cotrel

- Emphasized early intervention
- Demonstrated ability to cure EOS especially

Casting Technique

Casting Technique

Casting as definitive treatment

Age 12 months

Cast to buy time

CHIOLIS, OHIGIOITS HOURT OYSIGHT

10 months later

Complications of Casting

- Chest wall deformity
- Eating intolerance
- Decreased pulmonary function (temporary)
- Cast sores

- Brachial plexus injury
- Cranial nerve palsy
- Subclavian thrombosis

What about when casting fails? Traction

- Indicated in stiff curves with inability to brace or cast due to larger curves or proximal thoracic curves
- Goal is to increase traction as tolerated until:
 - Tiptoes if standing
 - Barely on buttocks if in wheelchair

Benefits of traction

- Coronal deformity (35%) *
- Trunk shift $(65\%)^*$
- Sagittal plane $(30\%)^*$
- Pulmonary function?
- Mobilization
- Increased surgical correction
- Decreased neurologic complications intraoperatively

Multiple Surgical Options

• Stay tuned – we are still figuring this out Nemours. Children's Health System

Juvenile Idiopathic Scoliosis

- 3-10 years of age
- Curves are often progressive
 - Potential for
 - severe truncal deformity
 - cardiopulmonary complications
 - Significant impact on lung maturation
 - 90% will need surgery due to magnitude of deformity and progression potential

Adolescent Idiopathic Scoliosis

- 11-18 years of age
- Approximately 90% of childhood spinal deformity
 - Prevalence 1-3%
 - Female-male ratio
 - 6:1 non-operative
 - 7:1 operative
- $\bullet > 90\%$ w/ right tho racic curve
- Majority asymptomatic
 - Back pain is common
- Patient/Family perception of body asymmetry

Risk Factors

- Family History
 - 30% incidence in daughters of women with AIS
 - 73-92% monozygotic twin condordance;36-63% dizygotic
- Peak adolescent growth spurt

Physical Examination

- Skin
 - Look for birthmarks, dimpling, hairy patches
- Strength
- Gait
 - Heel/Toe Walk
 - Can be used to elicit subtle motor weakness
- Neurologic Exam
 - Strength, sensation, deep tendon reflexes
 - Upper Extremities
 - Lower Extremities
 - Abdominal reflexes

- Gag reflex
- Supine straight leg raise
- Sensation

Physical Examination

Back Evaluation

- Anterior, posterior, lateral view
- Truncal asymmetry
 - Thorax, ribs, breasts
- Shoulder height
- Waist asymmetry
- Leg-length inequality

Left Pelvis Elevated

Physical Examination

Adam's Forward Bend Test

- Forward bend at waist
- Identify paraspinal prominences
- Result of abnormal vertebral rotation and coronal

• Scoliometer

- Used to quantify paraspinal prominences
- Positive result is > 7 degrees

Radiographs

- PA and Lat of the entire spine
- EOS

Radiographs

- Risser Sign:
 - Iliac apophysis develops from lateral to medial on AP view of pelvis
 - Risk of progression in Risser 1 or less as high as 70%
 - Risser of 3 has risk of progression ~ 10%
- Triradiate Cartilage
 - Closure coincides w/ the end of peak adolescent growth spurt

Radiographic Examination

- Cobb Angle:
 - Should be measured for all curvatures present
 - > 10 degrees establishes a diagnosis of scoliosis

Radiographic Examination

• Kyphosis:

- Assessment of sagittal thoracic contour
- Patients w/ AIS are usually hypokyphotic, but convex rib prominence may give appearance of increased kyphosis

Radiographic Examination

•MRI:

- Used to evaluate patients with "atypical" presentation
- Should include brain (posterior fossa) and entire spine (C,T,LS)
- Include Gadolinium contrast
- Neural axis lesions
 - Syringomyelia
 - Chiari malformation
 - Tethered cord
 - Tumors

Atypical Presentation

- Signs/symptoms that may suggest nonidiopathic deformity
 - Rapid progression
 - Large curve at dx
 - Left sided T curve
 - Pain that limits activity
 - ANY neurologic symptom/finding
 - Early onset

Natural History?

- Progression with growth
- Risk of curve progression is related to patient's maturity (Risser sign, menarchal status) and to the size of the curve
- Larger curves with more growth more likely to progress

Lonstein (1984) *Progression* >5° in curves:

Less than 20°		20°-29°
Risser 0 or 1	22%	68%
Risser 2-4	2%	23%

Risk of Sc	oliosis Pro	ogression	
Degree of Curve (Cobb Angle)	Age 10- 12	Age 13- 15	Age over 16
<20°	25%	10%	0%
20°-30°	60%	40%	10%
30° -60°	90%	70%	30%
>60°	100%	90%	70%

The above data has been obtained from the Scoliosis Research Society.

Treatment

- Based on initial deformity and risk of curve progression
 - Overall assessment of growth potential
- Goal is to prevent progression until skeletal maturity
 - Risk of curve progression decreases

Degree of Curve	<u>Treatment</u>
10º to 25º	Close observation – PA spine Q4-5months
25º to 45º	TLSO bracing
>45°-50°	Posterior Spinal Fusion

Therapy

Observational Monitoring

- Follow-up standing PA and lateral scoliosis xrays at 4-12 month intervals depending on growth potential
- Core strengthening & conditioning exercises
 - Recommended for all patients, especially those with pain
 - Physical Therapy techniques
 - Yoga/Pilates

Bracing

- Braist study (NEJM 2013 Weinstein et al.)
 - Study stopped short because of success
 - Brace wear positively associated with decreasing rate of progression to surgical grade curve
 - More brace wear associated with greater success with greatest success seen in those wearing the brace >12.9 hours daily
- Cobb angle between 25 & 45 degrees who are at increased risk of progression
 - Premenarchal
 - Risser < 2

Surgical Treatment

- Cobb angle > 45 degrees w/ risk of progression
- Spinal arthrodesis w/ instrumentation

Goals of Surgical Treatment

- Stop curve progression
- Achieve maximal deformity correction
- Improve appearance w/ trunk balance
- Reduce short- and long-term complications

Surgical Treatment Technique

- Choice of surgical approach and technique is dependent on deformity, flexibility, and surgeon preference
 - Most treated by posterior approach
 - Some by anterior approach
 - Occasionally combined approach

Post-operative Care

- Typical hospital stay of 3 days
- No post-operative brace
- Return to school in 3-6 weeks
- Activity restrictions for at least 6 months

Complication Risks with Surgical Treatment

• Blood loss (transfusion rate)

Nemours. Children's Health System

- Infection
- Neurologic injury
- SMA Syndrome

*NR- non-reported

National ~ 50% .9-3-% 1-2 per 1000 1-4%

NCH

<.01%

NR*

NR*

0 since 2014

Take Home Points

- Who
 - Spinal deformity in children is relatively common
 - Can develop at any age
 - Predominately effects girls
- Diagnosis
 - Clinical exam
 - Full length PA and Lat scoliosis films
 - Recognize "atypical" presentations
 - In all age groups larger curves are associated with greater risk of progression
 - Significant effects on thoracic and pulmonary growth and ultimately mortality in patients <8yrs old especially in IIS
- Treatment
 - Varies based on age and severity of curve

Thank You

From the Nemours Children's Hospital Orthopaedic Team

